Determining asteroid masses from planetary range
a short course in parameter estimation
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| wish to provide a fresh look on a old problem : how to determine asteroid masses from
planetary range observations ?

| also wish to provide a fresh look on parameter estimation altogether -> the presentation
should be interesting even for those of you not directly involved in estimating asteroid
masses.



. why do we want to determine asteroid masses ?

@ precious source of information about the asteroids themselves

determination of porosity, material composition, collisional evolution etc.

@ limiting factor in the prediction capacity of planetary ephemerides

. what is ranging data ?

@ ranging data

measurements of the distance between a
spacecraft and a DSN antenna,
in practice round-trip light-time

@ planetary ranging data

measurements of the distance between a planet
and a DSN antenna

* ranging data are measurements of the distance between a ref point on an antenna on
Earth and a ref point on a spacecraft

based on a signal emitted and bounced back -> from the round-trip time we can compute
the distance

* planetary range = ... = range between planetary barycenters



. Mars ranging : more than 10 years of data with accuracy ~ 1 m
data with lower accuracy is available since the 1980s

Mars Global Surveyor (MGS) Mars Odyssey (MO)

Mars Reconnaissance Orbiter (MRO)
1999 - 2007 2002 - now

2006 - now

. up to about 400 asteroids could induce perturbations > 2 m

OBIJECTIVE : extract asteroid mass information from Mars range data

general introduction to parameter estimation, practical application to asteroid mass determination

Asteroids are in the main-belt, between Mars and the Earth.
Mars ranging most sensitive to asteroid perturbations
data available with an accuracy of 2 m ...

Up to 400 asteroids can perturb ->



. how to extract information from the ranging data ?.. the naive approach

find the parameters of the model, so that

@ model able to reproduce the data
range prediction = range data

- orbits of the Earth and Mars around the Sun
- perturbers : Moon, planets, asteroids
- other (solar oblateness, solar plasma etc.)
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(O = real value of a parameter (unknown)
@ =value of a parameter in the model

‘ the parameters can be recovered by simply exploring the parameter space




. if data is noisy, many model predictions are satisfactory

Earth-Mars distance

time

‘ uncertainty in observations induces uncertainty in the recovery process.
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. how to extract information from the ranging data ?.. a more formal approach

. notation :
Z range prediction
P={(p i) model parameters

z range data

obs

. if each model parameter is a correction with respect to a reference value,

the range dependence on the model parameters is linear :

z2(pp, Pyse-) =M p+M,p, +...= MP

M,M,,.. partials with respect to the parameters

M matrix of partials




@ the distance between data and prediction can be estimated with the L2 norm
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@ without noise :

‘Z_Zob.\' P - (MP_Z()!;S)Z = 0

® ° .
T‘“ 5 M/V\/ P=(M"M) Mz,

> least — square solution

@ withnoise:

+ ¢ |Z_Z(:ll§'|2 :(MP_Z(;M)Z <&
tes

time (P-PYM'M(P-P)<&

(M™MY'M'z

obs




constraint on parameters: (P—P" )Y M"M(P-P")<é

‘ ... interior of an ellipsoid !

if M7 M is diagonal :
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if not diagonal, the ellipsoid is not aligned with the parameter axes

center defined by least-square solution P' =(MTM)'] M"zub\
®
size given by noise &
relative sizes of axes given by proper values of M’ M

orientation given by proper vectors of MTM

parameter uncertainties = ¢'y/diag (M M)

corresponds to the sides of a bounding box




. If noise on data follows a Gaussian distribution with variance o

&

the probability of finding the real parameters at a given point of the parameter space follows a
multivariate Gaussian distribution

the multivariate distribution can be represented by an ellipsoid
that has a 70% chance of containing the real parameters




. using the LGorm constraints parameters to an ellipsoid = least squares

2
|z ~ Zob |2 = Z(Za = Zope )
i

@ what about other norms ?
Y SN

|Z‘ an.\lx = max |Zl ~Zobs,i
i
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time

@ regularization
Bounded Variable Least Squares (BVLS)

|z o . + G‘P‘] Lasso +

B o ‘CPI Danzig selector (DS) + Elastic Net
[ =2, : high order Tikhonov _ Tikhonov
|z_zuh\ > +|CP‘2 +i3|P‘|

Weighted Lasso Truncated Singular Value Decomposition (TSVD)

There are many ways to estimate parameters from data ! "
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. how is the knowledge of the parameters improved by the data ?

knowledge = information = density of probability

. notation : fX(X) = [X] probability density of variable X

f)qy ()f) = [Xl Y] probability density of variable X, given variable Y
This is what we are looking for !

@ Bayesformula:  [X|Y]=ax[X]x[Y]|X]
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. [P|an_\_]=[P]X[z(m|P:|=[p]]><[p2]><...X[Zm‘l |P]><[Zum,z | P]x...

_H p-‘] H uhu'P
—H[pi Hexp[ &]

2 2
—H[pl]xexp[z (B (MP)) }

c)ﬁs

—H[p, xexp[ 75 ]
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Pl 207

the most probable set of parameters is the one that minimizes
... the least square solution

nb\ M P

(P—p)' C*'(Pf,u)J

... a multivariate Gaussian distribution exp(— 5

ﬁ the least square solution is the optimal method for extracting information i3
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@ if the a priori knowledge on the individual parameters = Gaussian distributions
[P | Zab,\-] = [P]X[Zab_s- | P] = [}UI]>< [pZ]X”' X[Z(ibj"l | PIX [Znh.s‘,2 | P] X
;v_/ — A

~—
multivariate Gaussian distribution multivariate Gaussian distribution

Y "
pl
- ... the updated knowledge = multivariate Gaussian distribution
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. updated knowledge = multivariate Gaussian distribution

center:  (NTNY'N'Z,,

parameter 1o f . T -1
uncertainties : O-,g dlag (N N)

/ M z obs

where N= and Z, =

C}: 172 C‘,—)I/Z‘up

with prior information, the solution is still given by the least squares
only true for Gaussian priors

. equivalent to Tikhonov regularization :

INP-Z,,,

=|MP-z,,

2+

O-z:CJ'—‘I (P_ ,UP)‘Q

. Any form of regularization can be interpreted as accounting for additional information
very important to know in order to use regularization correctly
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SUMMARY :

in presence of Gaussian noise
. least squares are the optimal method for extracting information from observations

@ least squares constrain parameters into an ellipsoid
@ any improvement requires additional information

prior information on parameters can be easily accounted for,
if prior distributions are Gaussian the solution is then given by Tikhonov regularization

@ Tikhonov regularization also constrains parameters to an ellipsoid

. any form of regularization can be interpreted as accounting for additional information
this is interpretation necessary in order to apply the regularization correctly
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. objective
determine and extract asteroid mass information from Mars range data

Rl 1 W D AT A
(NDINTNEN NDRENNIN)

data vo [l [0 [N FUNYNEE [y
approximately wro [TNININ [ [ W
11000 Mars N 1 ! 1 1 1 1 &
ranging I T T T T T T >
observations 1999 2001 2003 2004 2007 2009 2011

. model = model used to build the DE423 planetary ephemeris
Folkner 2010

. adjusted parameters: - 343 asteroid masses

atotal of about 400 parameters  _ 1 njtjal conditions for the orbits of Earth and Mars
- other (solar plasma correction, constant biases)
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constraints on parameters Tagnel s sT - —
given by least-squares : P=(M M) M Lo and AP=¢|5‘\,‘dzag {M M)

im

. matrix of partials

obtained by finite differences

000

one-way range [m / mass ]
0
1

I PN

T T T
2000 2002 2004 2006 2008 2010 2012

time [yr]

the model parameters by simple least squares :

huge uncertainties
in practice, the inversion of the covariance matrix is impossible (the matrix is close to singular)

the range data alone provides no information regarding asteroid masses

more information is needed
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. what do we know about the 343 asteroid masses ? ... they are positive

depend on diameters and densities

. absolute magnitude
asteroid diameters
depend on absolute magnitude D = 1 329 IO*O-ZH
[km] ™

and albedo (Bowell et al. 1989) [

albedo

. WISE MIMPS SIMPS
Masiero et al. 2011 Tedesco et al. 2004  Tedesco et al. 2004
~ 100000 diameters  ~ 100 diameters ~ 1000 diameters
—
<l

300 / 343 diameters are known to 10%
40 / 343 diameters are known to < 35%

only 4 / 343 diameters are undetermined
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@ classical approach to introduce prior information :

introduced in Williams 1984

splitting asteroids into major and minor objects

~ 20 asts ~ 320 asts
masses fitted individually
diameter
taxonomy class (C/S/M)

masses determined assuming constant
density in the 3 taxonomy classes

3 parameters fitted

number of parameters reduced

involves 2 hypotheses

uncertainty estimation not obvious
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. asteroid mass densities

density distribution is
approximately Gaussian :

mean = 2.2 g cm™3
deviation = 1 g cm?3

16 Psyche

mass density [g em ]

. prior information on masses for asteroids with determined diameters :

@ nominal mass
computed from radiometric diameter and mean density

@ louncertainty = 0.5 nominal mass

the true mass can reasonably be at 0 or at twice
the nominal mass

truncated Gaussian distribution

mass [ nominal masses ]
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_ what do we know about the 343 asteroid masses :

N = 300 asteroids

N =4 asteroids

mass [ nominal masses |

constraints on parameters
given by least-squares :

. Tikhonov regularization with Gaussian priors

P=(N'NY'N'Z,,

mass [ nominal masses ]

and AP =g\/diag (N'NY"

@ Tikhonov regularization with truncated Gaussian priors
solved with NNLS algorithm (Lawson & Hanson 1974)
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. fitting the model parameters to Mars range data

. post-fit residuals :

¥ MGS
lo=11m

@ ODY
16=09m

@ MRO
lo=1.0m

2000 2002 2004 2006 2008 2010 20

e

e

one-way range [ m |
0

2000 2002 2004 2006 2008 Zd 10

4 -2 0 2 4

2000 2002 2004 2006 2008 2010
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. asteroid masses :

mass [ nominal masses ]

1 50 100 150 200 250 300 343
uncertainties :
the range data constraints relatively few masses
w
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prior 16 uncertainty

e posterior 1o uncertainty
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. 30 asteroid masses are determined to better than 35%

4 Vestagoe

1 Ceresoo

2 Pallas g @

3 Juro s e

10 Hygiea @ @

324 Bambergae

7 Irisee
704 Interamnia® @

15 Eunomia @ @
14 Irene o @
19 Fortunae g
8 Floraoe

6 Hebeoe
16 Psyche s @

w

Europae @

@ asteroids determined by other methods :

GM [km? 7]

17.13

62.53

12.42
182
6.85
068
1.07
299
153
052
044
0.33
0.70
1.68
237

uncertainty (%)
0.6
0.6
3.0
6.9
8.1
8.8
10.2
144
156
16.1
17.5
18.1
18.7
18.9
20.7

53!
18
2
8!

(<]

w
8
= & B

b
2
3
89
423
654
164
134
505
41

- oW

of the adjusted mass

GM [km?s?]  uncertainty (%)

Herculina® 0.79 223
Melpomene 0.25 26.4
Amphitrite ® @ 0.59 273
Thisbe @ 0.76 27.4
Davida® @ 194 276
Egeria @ 0.78 27.6
Thalia ® 0.13 281
Euphrosyne @ 1.83 282
Julia 0.30 314
Diotima 0.76 318
Zelinda 019 322
Eva 0.13 333
Sophrosyne 017 334
Cava 0.12 337
Daphne @ ® 037 34.1

B spacecraft or multiple system

B Mars ranging (classic approach)
Konopliv et al. 2011

B close encounters - Baer et al. 2001
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Conrad et al. 2008

@ 41 Daphne binary system observation

A. Konopliv

@ DAWN tracking

@ comparison with other mass determination :
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Konopliv et al. 2011

@ Mars ranging, classic approach
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our masses compare well with determinations obtained by others

Tikhonov regularization performs at least as well as the classic approach

while relying only on available knowledge of asteroid diameters and densities
(no taxonomy information, no assumption of constant density, no selection of individually adjusted parameters)
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CONCLUSION :

Tikhonov regularization appears as a good alternative to the classical approach

@ performs well :

@ 30 asteroid masses can be determined from range data to better than 35%

@ compare well with estimates obtained elsewhere

@ offers a rigorous framework to treat prior information :

@ avoids choices / hypotheses necessary in the classic approach

@ guarantees that we cannot do better without additional information
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